
®

A
 p

u
b
lic

a
ti
o

n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

5: kd> !analyze -v

* *

* Bugcheck Analysis *

* *

THE_NT_INSIDER_RELEASED

An attempt was made to access a pageable pagable pageable (or completely invalid)

article at an interrupt request level (IRQL) that is too high. This is usually

caused by driver writers using improper time management or giving improper

project estimates.

If kernel debugger is available get stack backtrace. If kernel debugger is NOT

available, how are you seeing this message??

Arguments:

Arg1: 00000001, issue

Arg2: 00000021, volume

Arg3: 00000000, value 0 = issue contains Pontification, 1 = no Pontification

Arg4: 00000004, page which contains Peter Pontificates

Issue Details:

*** ERROR: Issue load completed but symbols could not be loaded for NTInsider.sys

ARTICLE_COUNT: 4

FAULTING_IP:

Page6!XperfIsHappiness

PROCESS_NAME: KmdfAndUmdfHints.exe

PROCESS_ARGUMENT: PageNumber=8

ARTICLE_BUCKET_ID: FILE_SIZES_IN_WINDOWS

ARTICLE_PAGE_NUMBER: 10

STACK_TEXT:

WARNING: Unwind information not available. Following page number may be wrong.

PageNumber ArticleTitle

00000012 FixYourOfflineSymbols

Followup:

Get the WinHEC
Extra Edition HERE!

http://bit.ly/1CmLdDM
http://bit.ly/1CmLdDM
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 2
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partners
W. Anthony Mason
Peter G. Viscarola

Executive Editor
Daniel D. Root

Contributing Editors
Scott J. Noone
OSR Associate Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2015 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

OSRHINTS: TECHNICAL TIPS FROM OSR
VIA EMAIL

Not everyone has the time to keep up with various flavors of social
media - and in some parts of the world, it’s not even possible.

For such folks, OSR created the OSRHINTS mailing list, where we will
duplicate our Twitter posts of technical hints, tips, tricks and other
useful industry or OSR-related updates.

To options to join:

1. Send a blank email to:

join-osrhints@lists.osr.com

2. Visit OSR Online and sign-up interactively:
http://www.osronline.com/custom.cfm?name=listJoin.cfm

O SR hosts the most active, informative and well-moderated peer technical mailing lists on
Windows systems software. Read/contribute to the lists via email, web, or even your

favorite news reader.

NTDEV -- Windows System Software Developers List
This list is dedicated to the development of drivers for the Windows family of operating
systems. Looking for Win32 or user-mode peer support? Not here. But if you've got a design,
implementation or support issue with a Windows kernel-mode driver, this is the place to be.
Inhabited by newbies, seasoned veterans, and even the Microsoft developers... Take the
opportunity to learn from your peers to get over that particular development hump.

NTFSD -- Windows File System Developers List
Developing file systems or file system filter drivers? You need to be intimately familiar with the
topics discussed on this list. Really...you can't afford not to partake of the information that is
exchanged in this list.

WINDBG -- Windows Debugger Users List
Having trouble debugging a particularly thorny issue?? Do you find it impossible to make
WinDbg do what you want?? This is the list for your issues.

Oh yeah, and when you want to vent off-topic…

NTTALK -- Extended Discussions About System Software
Hate/Love some feature in the Windows I/O subsystem??? Think Linux does it better/worse?
Want to hold forth on why nobody ever will (or perhaps should) be able to write drivers in C#??
Why C++ is a plague on human kind?? This is the list for you. Free-flowing, rambling, sometimes
even intelligent and thought provoking... that's what you'll find on NTTALK.

mailto:join-osrhints@lists.osr.com
http://www.osronline.com/custom.cfm?name=listJoin.cfm
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTDEV
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTFSD
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=WINDBG
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTTALK

Page 3
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

J ust in case you’re not already following us on Twitter, Facebook, LinkedIn, or via our own “osrhints” distribution list, below are
some of the more recent contributions that are getting attention in the Windows driver development community.

SAL Annotations: Don’t Hate Me Because I’m Beautiful
It’s time to give SAL annotations another try...
http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/

Would you Like Some Pi With Your Windows 10?
Bakers local to Redmond help announce tasty combination.
http://www.osr.com/blog/2015/02/02/like-pi-windows-10/

The Ferris Wheel is Heading Up: Microsoft Bringing Community Engagement
MSFT Loves Driver Devs?
http://www.osr.com/blog/2015/01/28/ferris-wheel-going-up/

Connected Standby: It’s not Just for SOCs anymore
A primer in 939 words.
http://www.osr.com/blog/2015/01/14/connected-standby-just-socs-anymore/

WE KNOW WHAT WE KNOW

We are not experts in everything. We’re not even experts in everything to do with Windows.
But we think there are a few things that we do pretty darn well. We understand how the
Windows OS works. We understand devices, drivers, and file systems on Windows. We’re
pretty proud of what we know about the Windows storage subsystem.

What makes us unique is that we can explain these things to your team, provide you new
insight, and if you’re undertaking a Windows system software project, help you understand the
full range of your options. AND we also write kick-ass kernel-mode Windows code. Really. We
do.

Why not fire-off an email and find out how we can help. If we can’t help you, we’ll tell you that,
too.

Contact: sales@osr.com

Follow us!

THE NT INSIDER - Hey...Get Your Own!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/
http://www.osr.com/blog/2015/02/02/like-pi-windows-10/
http://www.osr.com/blog/2015/01/28/ferris-wheel-going-up/
http://www.osr.com/blog/2015/01/14/connected-standby-just-socs-anymore/
mailto:sales@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com

Page 4
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

I know that progress is a good thing. Progress is defined by Merriam-
Webster as "gradual betterment," which is kind of a crappy phrase but it

gets the meaning across nonetheless. So I like progress. Who doesn't,
right? Everyone likes it when things get "better." Yay! As we say here in
Boston (and we've said it a lot in the last few years) "Queue the duck
boats, let's have a pahty."

But, just so we're all clear: progress is not the same thing as change.

By now, I should probably tell you WTF I'm talking about. OK, I'm talking
about Windows 10. And lots of other application interfaces, like the ones
on the iPad's WSJ app and the Weather Channel apps. But I really want to

concentrate on talking about Windows 10. And, yes, I'm going to talk about the start menu. And in order to do that, I have to talk
about Windows 8. And Windows 7. And Windows 95, which is where I'll start. Ha. Where I’ll “start.” Kinda like a joke.

The Windows 7 start menu traces its roots back to at least Windows 95. Maybe further. But when I got to 20 years back, I got
bored and quit Googling. When this start menu structure was designed, people were using teeny tiny little screens. You clicked
the start button, the start menu comes up, and you have just about everything you want at your fingertips. Organized in a space-
efficient little strip, once you clicked "Programs" (which was updated to "All Programs" by Windows 7) you got an alphabetical list
of folders that represented application categories. You opened the folders to find out what was in each group. Most of us figured
this was pretty good. It worked reasonably well.

Many years later, the Windows 7 start menu gave us an updated and slightly more attractive version of this same Windows 95
start menu. And why not? It provided a perfectly reasonable, rational, method of doing stuff using smaller video screens. Except
in 2009, when Windows 7 was released, more than 50% of users had screens that were larger than 1024x768. But, whatever.

Then along came Windows 8/8.1 and as we all know, the start menu disappeared. Instead, we got a start screen, which just about
everyone will tell you is evil. "I can't use it", "I can't find anything", "It sucks", "I want Windows 7 back", "I hate Windows 8
because of the start screen"… you've heard all this, I'm sure. Heck, some of you probably say it. It's Internet wisdom, and thus, of
course, it is true and not to be challenged.

The biggest complaint I hear from the "haters of the start screen" is that their stuff can't be located by category anymore like you
could on the Windows 7 start menu.

Well, I certainly agree that the
ability to find your apps by category
is vital. When I want to find "the
command prompt thing for VS that
has the ARM Phone tools" I should
be able to look under "Visual Studio
2012" or "Windows Phone"
something to find it.

Can't find it on Widows 8.1, can
you! Nope! Because the start
menu is gone. The bastards!

Well… on Windows 8.1, you go to
the start screen (click the start
screen button), then click the down
arrow on the start screen. Voila!
List of desktop apps, sorted by

(CONTINUED ON PAGE 5) Figure 1—Love the Start Menu? Figure 2—Windows 7 Start
Menu… The Same, but Prettier

http://www.wbur.org/2015/02/04/photos-patriots-parade
http://www.wbur.org/2015/02/04/photos-patriots-parade

Page 5
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

WINDOWS INTERNALS & SOFTWARE DRIVERS
For SW Engineers, Security Researchers, & Threat Analysts

 Next Presentation:

category. And since you have the whole screen, you can see all the apps under a given category. No more Windows 95 and
Windows 7 style hiding stuff in "folders" that you have to open. Yay!

So ignore the fact that if you took two minutes to figure out how it works, you would plainly see that you can do everything (and
more) from the Windows 8.1 start screen that you could do from the Windows 7 start menu… and with no increase in the number
of mouse clicks. And tailored to take optimum advantage of the fact that we pretty much all have big screens these days and that
those screens can quickly update, repaint, and show us different views.

Nope, ignore that. The Internet says the Windows 8.1 start menu sucks, so that's all most people need to know about it.

So, as you can see, I am definitely not one of the start screen haters. Well, let's be clear. I hate the Modern start screen, of
course… but once you click the little down arrow and get the display you see in Figure 3, I'm loving it. Given that I sit at my system
60 or so hours a week, the fact that I can get work done with a minimum of annoyance is a good thing.

Therefore, regardless of what the Internet says, I would consider the Windows 8.1 start screen "progress" – or at least, not a step
back in time.

But given that the Internet has been clamoring for the
return of the start menu, and Microsoft's Team Nadella
wants to appear receptive (perhaps even downright
responsive!) to customer requests, the start menu is
returning in Windows 10. Bye bye start screen. The
result from (publically released) Build 9926 is shown in
Figure 3.

Click on the start button, you get a little mini start
screen. Then you click on "All apps", and what do you
get? A kind of weird agglomeration of tiles, Modern app
names, and folder names sorted in alphabetical order.
So under "W" for instance, you see an icon for the
"Weather" app, and a little folder icon that says
"Windows Accessories" (click to open), oh… there's
where Notepad is hiding. Hello Notepad!

(CONTINUED FROM PAGE 4)

(CONTINUED ON PAGE 31)

Scott is extremely knowledgeable regarding Windows internals. He has the
communications skills to provide an informative, in-depth seminar with just the right
amount of entertainment value.
 - Feedback from an attendee of THIS seminar

Dulles/Sterling, VA
18-22 May

Figure 3 — Desktop Apps are Listed by Category,
Just Like in Win7 Start, All Programs

http://www.osr.com/seminars/software-drivers/

Page 6
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

I n 2012 a group of researchers published a paper titled, Awe Expands People’s Perception of Time, Alters Decision Making, and
Enhances Well-Being. The conclusion of the paper is that experiencing the feeling of awe might just make us happier, change

our perception of time, and even make us more likely to volunteer (thus making the world a better place). This clearly indicates
that we need more awe in our lives, we owe it to ourselves and to society as a whole.

Given this research, we figured it was time for another article about Xperf. No, not the French produced guinea pig food (which,
according to the Amazon reviews, is awe inspiring in its own right, see Figure 1), but the utility
provided by Microsoft for performance analysis on Windows. We’re always shocked to see how
few people take advantage of what is one of the most awe inspiring tools you can get for free
these days.

We discussed the basics of collecting traces back in 2010 with the article Get Low - Collecting
Detailed Performance Data with Xperf. If you’ve never read that article please do that now as it
should give you a good feel as to what Xperf is all about. Note however that article references
an old GUI that has since been replaced by the Windows Performance Analyzer utility, which
we’ll be using in this article.

For this article, we’re going to take a different approach than we did previously. We’re going to
create an incredibly trivial and overly simplistic example that demonstrates timer skew and see
how we might use Xperf to analyze the cause of that skew. In addition, we’ll show you how to
inject your own, custom trace points into an Xperf analysis to help identify specific behavior in
your driver.

The Example: A Timer That Fires Every 15ms…Or Not…

Did we mention that the example would be incredibly trivial and overly simplistic? Don’t worry, the implementation
will be even more trivial and simplistic. Our goal is to use Xperf to methodically extract information from a Windows
machine exhibiting a particular behavior, not design a real solution to a real problem. Please keep eye rolls to a
minimum and focus on the analysis!

Let’s say we have a simple KMDF driver that requires a periodic timer that fires every 15ms, which we know to be about the
granularity of the interval timer on Windows. We’ve heard that Windows is not a real time OS, but we choose to believe that
things will be “close enough” and plow ahead with our implementation anyway. We’re also good with the timer firing within 5ms
either way of our deadline, so as long as it doesn’t take more than 20ms between timer fires, we won’t severely injure someone
(much).

KMDF makes the creation of our timer callback simple, we just initialize the appropriate configuration structure and create the
timer with WdfTimerCreate:

WDF_TIMER_CONFIG_INIT_PERIODIC(&timerConfig,
 NothingEvtTimerFunc,
 15);

 WDF_OBJECT_ATTRIBUTES_INIT(&objAttributes);

 objAttributes.ParentObject = device;

 status = WdfTimerCreate(&timerConfig,
 &objAttributes,
 &devContext->Timer);

Prior to starting the timer, we capture the current system time with KeQuerySystemTime so that we can check the elapsed time in
the timer callback. We then start the timer with WdfTimerStart:

(CONTINUED ON PAGE 7)

Figure 1

http://faculty-gsb.stanford.edu/aaker/pages/documents/TimeandAwe2012_workingpaper.pdf
http://faculty-gsb.stanford.edu/aaker/pages/documents/TimeandAwe2012_workingpaper.pdf
http://www.osr.com/nt-insider/2010-issue1/collecting-detailed-performance-data-xperf/
http://www.osr.com/nt-insider/2010-issue1/collecting-detailed-performance-data-xperf/

Page 7
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

KeQuerySystemTime(&devContext->LastTimestamp);

(VOID)WdfTimerStart(devContext->Timer,
 WDF_REL_TIMEOUT_IN_MS(15));

In the timer callback, we calculate the delta between the current time and the previously recorded time and check to see if it
exceeded 20ms (in 100ns units). If it does, we record a “miss”. Otherwise, we record a “hit”:

VOID
NothingEvtTimerFunc(
 In WDFTIMER Timer
) {

 LARGE_INTEGER currentTime;
 LONGLONG delta;
 PNOTHING_DEVICE_CONTEXT devContext;

 devContext = NothingGetContextFromDevice(WdfTimerGetParentObject(Timer));

 KeQuerySystemTime(¤tTime);

 delta = (currentTime.QuadPart - devContext->LastTimestamp.QuadPart);

 if (delta > ((20 * 1000 * 1000) / 100)) {

 devContext->Misses++;

 } else {

 devContext->Hits++;

 }

 devContext->LastTimestamp.QuadPart = currentTime.QuadPart;

 return;

}

(CONTINUED FROM PAGE 6)

(CONTINUED ON PAGE 22)

ALREADY KNOW WDF? BOOST YOUR KNOWLEDGE

Read What Our Students Have to Say About
Writing WDF Drivers: Advanced Implementation Techniques

It was great how the class focused on real problems and applications. I learned things that are
applicable to my company's drivers that I never would have been able to piece together with just
WDK documentation.

A very dense and invaluable way for getting introduced to advanced windows driver
development. A must take class for anyone designing solutions!

Next Presentation:

Boston/Waltham, MA 15-18 June

http://www.osr.com/seminars/advanced-wdf/

Page 8
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

I f you're a developer who's been using WDF for a while, you’re probably comfortable writing a KMDF or UMDF driver. And, if
you're comfortable writing a driver, you're probably reasonably comfortable setting up and using the debugger to help you get

that driver working.

But if you're like most of us, you could still benefit from a few tips on developing and debugging. If so, here are five hints that
every WDF driver dev can use to make their life easier.

Hint 1: Set Your Symbol Search Path Properly – This is Always Step 1
If you've been working with WDF for a while, you probably already know this. But it's worth repeating: There's not much you can
do, except get frustrated, if you attempt to debug your WDF driver without using the proper symbols. This includes not only
symbols for your driver, but symbols for the Windows OS and HAL, and symbols for WDF as well. Neither WinDbg itself nor the
WDF Kernel Debugger Extensions will work correctly until you have all the correct symbols loaded. Therefore, loading the right set
of symbols is not an optional step. If you're going to use the debugger, you really must do it.

Fortunately, getting your symbols set up is easy. If the system on which you're running the debugger can access the internet, you
can issue the command ".SYMFIX" followed by ".RELOAD" to the WinDbg command prompt. ".SYMFIX" sets your symbol search
path to the Microsoft Symbol Server, and ".RELOAD" causes the symbols to be loaded. You can find a more detailed description
(including an optional video, even) of how to properly setup your WinDbg symbols here in the OSR Developer Blog. If your debug
environment is not able to access the internet (poor you!), check out the article in this issue of The NT Insider about how to setup

your symbols .

Hint 2: Enable Windows Driver Verifier and WDF Verifier When Testing – Always
While you're working on your UMDF v2 or KMDF based WDF driver, always enable WDF Verifier on your test system. If you're
writing a KMDF driver (or a WDM driver for that matter), also always enable Windows Driver Verifier. These tools will help you
catch errors in your code much earlier than you would otherwise. They are not noisy, they do not generate spurious errors, and
they are both tools that are entirely appropriate to use while your driver is actively under development and "not yet finished."

You can control Windows Driver Verifier using the tool Verifier.exe that is installed as a standard part of any Windows installation.
As part of enabling Windows Driver Verifier for your driver, select both your driver and WDF01000.SYS (the Framework itself) to be
verified. Enable all the options in Windows Driver Verifier, except IRP Logging and anything with "low resources simulation" in the
name. If you don't interact directly with PoFx, you should probably leave "Power Framework Delay Fuzzing" off as well. After
enabling Windows Driver Verifier on your test system, you'll have to reboot for your new Windows Driver Verifier settings to take
effect.

When you enable Windows Driver Verifier for a KMDF driver, WDF Verifier is also automatically enabled with basic settings. You'll
probably want to enable more checks in WDF Verifier than Windows Driver Verifier enables automatically.

You enable WDF Verifier and specify the specific options you want to use for your driver via settings under your driver's key in the
Registry. For KMDF, specify your WDF Verifier settings under the following path:

(CONTINUED ON PAGE 9)

DESIGN AND CODE REVIEWS
When You Can’t Afford Not To

Have a great product design, but looking for validation before bringing it to your board of
directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your
client base. Consider what a team of internals, device driver and file system experts can do for
you.

Contact OSR Sales — sales@osr.com

http://www.osr.com/blog/2014/10/01/setting-the-windbg-symbol-search-path/
http://www.osr.com/code-reviews/
mailto:sales@osr.com

Page 9
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

HLKM\System\CurrentControlSet\Services\<drivername>\Parameters\Wdf

For UMDF, the path is:

HLKM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WUDF\Services\<drivername>\Parameters\Wdf

The values that we recommend for you to set are the following (all REG_DWORDs):

 VerifierOn: Set to a non-zero value, enabled WDF Verifier

 Verbose: Set to a non-zero value, causes additional logging to the WDF Log

 VerifyDownLevel: Set to a non-zero value to enable the most WDF Verifier checks, not just those that were
current for the version of WDF against which your driver was built.

 EnhancedVerifierOptions: For KMDF only… Set to 1, ensures your driver's Event Processing Callbacks return
at the same IRQL at which they are called.

There are other useful values that you can set as well, but the items listed above are a good start. Check the MSDN
documentation for "Registry Values for Debugging WDF Drivers" for the full list.

Note that WDF Verifier works with both UMDF V2 drivers as well as KMDF drivers. Remember to make these Registry entries on
the test system, where your driver under test is running, not on the system you're debugging from! You'll need to restart the test
system for the settings to take effect.

If you don't feel like playing with the Registry directly, the WdfVerifier utility (WdfVerifier.exe) ships in the \tools subdirectory of
the 8.1 and later WDK. There's not much that's magic about this utility. It basically just makes the Registry changes for you, and
therefore keeps you from having to remember the exact names of all the Registry values.

Regardless of how you do it, the important part of this hint is to always enable both Windows Driver Verifier (for KMDF drivers)
and WDF Verifier (for KMDF or UMDF V2 drivers) on your test machine. Here at OSR, we often create our INF files to enable WDF
Verifier in the Registry by default. If you do this, be sure to remember to delete those values before shipping your INF!

One more tip: To check what WDF Verifier settings are enabled for your driver, use the !WDFDRIVERINFO WinDbg command with a
flag value of 1, as shown in Figure 1 (page 17).

(CONTINUED FROM PAGE 8)

(CONTINUED ON PAGE 17)

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2
Learning Kit is available in the Store at:
http://store.osr.com.

The board design is based on the well-
known Cypress Semiconductor USB FX2
chipset and is ideal for learning how to
write Windows drivers in general (and USB
specifically of course!). Even better, grab
the sample WDF driver for this board,
available in the Windows Driver Kit.

http://store.osr.com/
http://store.osr.com
http://store.osr.com/product/osr-usb-fx2-learning-kit-v2/

Page 10
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

O ne of the interesting challenges in building a robust isolation framework is the need to deal with file sizes. Our initial
explorations into this area resulted from our work on our File Encryption Solution Framework (FESF). However, we expect

our work on isolation to form the basis of a generalized data virtualization framework that will eventually become one of our
commercially available Solution Frameworks.

The fact that file sizes present a major challenge might surprise the casual reader. After all, one might wonder why file sizes would
be any more complex than managing any other file attribute. However, because those file sizes are used by other parts of the OS,
notably the VM system, understanding how these sizes are interpreted and the rules around that interpretation are important
aspects of ensuring correct behavior.

From the perspective of a file system isolation filter, there are six different “file sizes” that we are managing. These six sizes fall
into two groups:

 Logical Sizes: for the allocation, end of file (“file size” or EOF) and Valid Data Length (VDL)

 Physical Sizes: for the allocation, end of file and Valid Data Length

Logical sizes are what we present to the Virtual Memory system, and what applications perceive as the sizes of those files. What
does each one represent?

Allocation Size represents the amount of disk space allocated. Typically, this is enough to ensure that we don ’t need to allocate
more space during critical processing. For example, during paging write operations, there shouldn’t be any need for allocating
additional storage space. Of course, a file system (or isolation filter) could be written to handle this appropriately. For example, a
file system might simply do space reservation and then actually pick the space when it’s really required. The primary benefit to
deferring allocation is that some access patterns can cause significant fragmentation, which is an issue for typical rotating media,
but is actually not a concern for memory devices, such as NVME disks or SSDs.

End Of File is what we generally refer to as the “size” of the file. It indicates the number of bytes that this file contains. In
isolation, a logical file might differ from the physical file because there is either additional data in the file (e.g., encryption headers,
keys, additional state) or the data has different information density (e.g., compression or expanding encryption algorithms).
Indeed, one of the primary justifications for constructing an isolation filter is to permit us to manage the file size independent of
the physical storage. In that way, applications are blissfully unaware of the details of what we’re doing within the isolation layer.

Valid Data Length represents the “high water mark” of data that has been written to the file. This differs from End Of File (which
can be quite large) because it marks the region in which data has been written to the file.

Valid Data Length

Of these, Valid Data Length (VDL) is likely the most confusing. The reason Windows has this concept is to avoid an issue we refer
to as disk scavenging. Traditional media file systems do not erase data contents on the drive when space is freed. Thus, to avoid
exposing the contents of newly allocated space to the application, we track the region of the file that’s been written by the
application. Space beyond this point may be allocated, but the data contents are not returned to the caller – instead, they receive
known safe data – usually zero filled memory, though nothing requires that specific pattern. In order to ensure that the region
from VDL to EOF returns zeros, the file systems employ various techniques. In our experience we’ve seen four such mechanisms:

 Data between VDL and EOF is zeroed as part of allocation. This is the most resilient in terms of crash recovery
semantics (there’s never exposure of data inadvertently) and is also the most expensive in terms of
performance.

 Data between VDL and EOF is zeroed as part of closing the file. This is the technique that FAT uses, and it does
it during IRP_MJ_CLEANUP handling for the last open handle on the file. This may expose data in case of a
crash, but it is generally much better at performance.

 The VDL of the file is stored as persistent information within the file information itself. This is the technique
that NTFS uses. When a file is opened, NTFS can determine what the VDL of the file is and preserve correct
behavior, even after a crash.

(CONTINUED ON PAGE 11)

Page 11
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

 Similar to FAT, VDL to EOF is zeroed on the last user handle close of the file, but with a journaling technique
the file blocks are zeroed from VDL to EOF after a crash as well.

The VM system (Cache Manager and Memory Manager) components are concerned about VDL as well. This points to the fact that
the valid data length is not only an “on disk” concept, but also an “in memory” concept. Thus, the VDL for data stored in cache
may differ from the VDL as recorded on the disk itself.

This can lead to interesting behaviors in an isolation filter. For example, if an isolation filter skips over a disk region – saving space
for some of its own meta data – the file system beneath the isolation filter will typically zero out that region. Normally it would do
so via the VM system, which then triggers re-entrant I/O operations. If your isolation filter is not expecting to observe paging I/O
operations in the midst of its own non-cached I/O operations to the underlying file system, it will likely not handle the situation
properly.

Thus, in addition to the logical and physical sizes we have an “in memory” and “on disk” valid data length to consider! If you
review the FASTFAT file system example in the WDK, you can see how FAT handles this case both during write (zeroing holes in the
file) as well as during cleanup processing when the file is closed and it zeros the region from VDL to EOF.

I/O Rules

There are specific rules around the various file sizes and how they can be affected by I/O operations. To add even more complexity,
these rules vary upon the context in which the I/O is being performed:

 User Cached I/O - in this case, writes can - and do - extend the size of the file. The file size may be reduced
(truncation) via a call to either "set EOF" or "set Allocation". For NTFS and FAT, a user with appropriate
privileges (SeManageVolumePrivilege) may set the VDL. Note that there is no mechanism to query the value
of the VDL, which turns out to be a problem for isolation filters that change file layout. Thus, a write past EOF
moves the VDL, EOF and possibly the Allocation size. The file system zeros data between the current VDL and
the start of the new write. Filters will typically see such requests because the file systems use CcZeroData to
perform this operation, which then issues a paging I/O (IoSynchronousPageWrite). But the zeroing is avoided
when the user writes the entire region - even if it is written to the FSD out of order. This magic is possible
because the FSD captures the identity of the lazy writer thread (though NTFS and FAT do this differently).

 User Non-Cached I/O - the operations must be sector aligned and sector sized, except at EOF, though the
assumption is that we can use the remainder of the buffer, so it should be aligned to permit that as
well. What we have noticed is that some applications (e.g., the xcopy utility) make worst case assumptions
here: they sector size write and then truncate back to the correct EOF. Other applications behave differently.
Note that extending writes are permitted in cases like this. Just like the cached case - but far more obvious -
any holes in the file will be zero filled, unless the file permits sparse allocation.

 Paging I/O - all paging operations are done non-cached. There are special rules involved for paging operations

(CONTINUED FROM PAGE 10)

(CONTINUED ON PAGE 16)

OSR’S NVME DRIVER SOLUTION KIT

BETA PROGRAM

The OSR NVMe Driver Solution Kit provides both full source code and pre-built binaries for a
high-performance Windows NVMe driver, right out of the box. You may use and redistribute the
OSR NVMe Driver as provided or customize it using your own software team’s resources or with
help from the team at OSR.

First Code Drop Now Available!

http://www.osr.com/nvme-driver/
http://www.osr.com/nvme-driver/

Page 12
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

Community Contributor
David Boyce

S cott Noone's blog post entitled Setting the WinDbg Symbol Search Path (you can read it here) contains some great advice. But
his advice doesn't really apply if you're working in an isolated environment where you don't have direct access to Microsoft's

Public Symbol Server. In these environments, there's typically some mechanism to logically or physically isolate your testing
environment from the Internet. This isolation typically makes use of what's called an 'air gap' between your debugging
environment and the Internet. If your organisation has this type of network isolation in place, presumably there are good reasons
why it's there. If you still have to debug your driver… what do you do?

The question becomes: Is it possible to make a debug target's (T's) kernel symbols available to your (isolated) debugging host (H)?
Yes, if you can meet the following conditions:

1. You have access to the internet somewhere (machine 'C' above).
2. You have a means of transferring data in both directions across the air gap;
3. The means described in (2) is acceptable to your organisation.

Conditions (1) and (2) are basically technical issues, and the reader is assumed to be able to address them.

It's condition (3) that can get you into trouble if you don't pay careful attention. Some organisations will be concerned about
bringing malware in from the outside, while others will be concerned about letting internal data out. These are both legitimate
concerns, and any organisation which has set up an air gap will know what matters to them. Your job (or more) may depend on
correctly following the rules laid down in this area.

SymChk with Manifest Files

The basic approach used here is described in the Microsoft Dev Center page Using a Manifest File with SymChk. But here I've also
included the extra details needed to address the particular requirements of WinDbg kernel symbols.

In brief, the procedure is:

1. Create a symbol manifest file on the target (T, in Figure 1);
2. Transfer that manifest across the air gap to a machine (C, in Figure 1) with internet access;
3. Use the manifest to obtain the symbol files from the Microsoft Symbol Server;
4. Transfer the symbol files back across the air gap to the debug host (H, in Figure 1).

(CONTINUED ON PAGE 13)

Isolated environment

Debug Target

(T)

Debug Host

(H)

Host with Internet

Connection (C)

AIR GAP

Internet

Figure 1 -- An "Air Gap"

https://www.osr.com/blog/2014/10/01/setting-the-windbg-symbol-search-path/

Page 13
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

A few things specific to kernel-mode debugging are also important:

 Use the architecturally-appropriate version of SymChk on the target, i.e. 32-bit on x86 targets, and 64-bit on x64
targets;

 Use the name of the NT kernel for /ie argument;

 Avoid name resolution delays arising from attempts to access the public server (this is what often makes running
SymChk offline painfully slow).

SymChk for the Target Architecture

You will need the following executables gathered together for the target platform:

 symchk.exe

 SymbolCheck.dll

 symsrv.dll

 symsrv.yes

 symstore.exe

 dbghelp.dll

 dbgeng.dll

You can find these in the Debuggers folder of your WDK installation on your debugging host machine (H, in Figure 1). You may
need to install the WDK on a machine of the "other" architecture (perhaps a VM) to get that architecture's version.

You cannot run the x64 versions on a 32-bit OS for obvious reasons, and if you try to use the x86 versions on a 64-bit OS, you will
see messages like

[SYMCHK] Can't load file "C:Windows\system32\hal.dll"

for each 64-bit executable.

I have two sets of these (one set for 32-bit systems, one for 64-bit) on a USB stick in separate folders so I can run the version
appropriate to the target.

(CONTINUED FROM PAGE 12)

(CONTINUED ON PAGE 14)

WINDOWS FILE SYSTEM TRAINING

Next Presentation:

File system development for Windows is complex and it isn’t getting any easier. Filtering
file systems is more common, but is frankly MORE complex - especially if you don’t
understand the not so subtle nuances in the Windows file system “interface” (ask us what
that means!). Instructed by OSR partner and internationally-recognized file system expert,
Tony Mason—this is your chance to learn from his many years of practical experience!

I needed to learn as much as I could, and this was the right choice. I have a stack
of books, but a classroom experience was much more direct and an efficient way to
learn the material. I have already felt the value of this seminar in my day-to-day
work.
 - Feedback from an attendee of THIS seminar

Boston/Waltham, MA
12-15 May

http://www.osr.com/seminars/file-systems/

Page 14
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

On the Debug Target

Open a command prompt and enter a command similar to:

symchk /om manifest.txt /ie ntoskrnl.exe

 /s c:\Users\Foo\DeskTop\Empty

Here, manifest.txt is name of the manifest file to be created ('/om') which will be transferred across the air gap outwards. The
other arguments are explained below.

/ie Needs the Running Kernel’s Name

It might seem obvious, but if you want the kernel symbols, you're going to need the name of the kernel executable, which is
always in %SYSTEMROOT%\System32\ . In current versions of Windows, this name is (nearly) always ntoskrnl.exe, although I have
also seen ntkrnlpa.exe on XP. In the following example, it's clearly ntoskrnl.exe, as the kernel is unlikely to be named ntprint.exe:

C:> dir /b %SYSTEMROOT%\System32\nt*.exe

ntoskrnl.exe

ntprint.exe

symchk's /ie option requires the name of a currently executing program. In the isolated environment scenario, there's a
straightforward, if somewhat counter-intuitive, way to determine whether you have an incorrect executable name: if it reports

 SYMCHK: FAILED files = 0

you've got the wrong name! A non-zero value indicates that it found the executable.

Of course, this isn't completely fool proof, since using the name of any currently executing program (not just the kernel) will
produce similar reports. It does act as a useful sanity check, though.

When you're done, you'll know whether you've got the right symbols by the way WinDbg responds when you have completed the
transfer.

Avoiding Name Resolution Delays on the Target

This is easy: create an empty folder and tell SymChk that's where to get
its symbols from (/s):

mkdir c:\Users\Foo\DeskTop\Empty

symchk /om manifest.txt /ie ntoskrnl.exe

 /s c:\Users\Foo\DeskTop\Empty

By specifying an empty local folder, symchk doesn't attempt to contact
any symbol server.

Data Going Out

At this point, you should have a manifest file which needs to be
transferred across the air gap to the internet-connected machine (H, in
Figure 1). The content of the file is a normal text file which can be
opened by any editor. Each line represents an executable of some kind
together with information indicating its version. Typically there are
between 200-300 such lines in manifests wanting kernel symbols.

(CONTINUED FROM PAGE 13)

(CONTINUED ON PAGE 15)

WANNA KNOW KMDF?

Tip: you can read all the articles ever
published in The NT Insider and STILL
not learn as much as you will in one
week in our KMDF seminar. So why
not join us!

Next presentation:

Boston/Waltham, MA
8-12 June

http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/

Page 15
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

The vast majority of these lines represent executables which would be present on any Windows installation, and fetching their
symbols does not represent any kind of security breach. However, it is possible that in some secure environments, there are
executables listed for which the presence on the target system is confidential, and the attempt to fetch their symbols from the
server would expose this. The simplest remedy (assuming that you don't actually need their symbols) is simply to remove lines
referencing them from the manifest before transferring it.

Fetching the Symbols

On the host with internet access (C, in Figure 1), prepare an empty folder (e.g. C:\MySymbols) to receive the symbols and run the
following command:

symchk /im manifest.txt

 /s SRV*C:\MySymbols*http://msdl.microsoft.com/download/symbols

Here, manifest.txt is the transferred manifest file which determines which symbols are to be obtained from the Microsoft public

symbol server http://msdl.microsoft.com/download/symbols and placed below C:\MySymbols.

On success, C:\MySymbols contains the kernel symbols (and a number of others) that you need for debugging. The content of this
folder needs to be transferred back across the air gap to the debug host (H, in Figure 1).

When using the /im option on a 64-bit machine, you can run either version of symchk.exe.

Fetch Errors

Don't be surprised to see some messages of the form

SYMCHK: <filename> ERROR = Unable to download file. Error reported was 2

SYMCHK: FAILED files = <non-zero number>

even when <filename> is ntoskrnl.exe, provided the reported PASSED + IGNORED files is also non-zero.

For these purposes, such messages are (usually) benign; what's important is that C:\MySymbols is no longer empty and contains

the kernel's PDB folder, e.g. ntkrnlmp.pdb\.

Data Coming Back

The symbols files are binaries - a mixture of .dll, .sys and .pdb files. You may wish to run a malware scanner over these before
transferring them.

Finally...

When you've got your symbols back across the air gap, you have a local symbol cache at which you can point your WinDbg in the
usual way. Good bug hunting!

David cut his programming teeth at Honeywell working on a middleware product written in assembler, then migrated to C and C++
product development on various platforms. He's come relatively recently to Windows Drivers, but hey - he always enjoys a
technical challenge! He can be contacted at dboyce@becrypt.com.

(CONTINUED FROM PAGE 14)

Follow us!

mailto:dboyce@becrypt.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 16
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

with respect to file sizes. Most important is that paging writes do not move the EOF. Similarly, they do not

move the allocation of the file. As a result, we are limited in what we can do in this path. This should be OK -

but it means that any EOF management must be done in the set information path. Note that Paging I/O

operations may move the VDL.

In working with our isolation framework, we’ve found some surprising behaviors, which we’ll attempt to capture in hopes they will
help future developers in this area:

 The filter verifier has a bug where it will assert that your buffer is misaligned if you perform a sector aligned
write, with a page aligned buffer, but a non-integral length at end of file. The file systems expect this case and
all works as intended. For us, this meant that we had to avoid using FltWriteFile (or FltWriteFileEx if you’re
using the MDL passing interface) and instead explicitly built our own callback data structures for the writes –
that path works correctly. The error that filter manager throws up is not only confusing (the buffer is aligned)
but actually permitted by the file system.

 Paging writes to NTFS or FAT that are beyond the EOF do not fail. Instead, they return STATUS_SUCCESS and
indicate zero bytes written. This was surprising to us and we spent quite a bit of time understanding the
circumstances around this behavior. Much of this has to do with serialization and parallel file activity, as well
as the manner in which the file systems handle files that have been deleted and/or truncated.

 Unlike allocation size and file size, there is no mechanism for obtaining the VDL of a file from the underlying
file system. This is a complicating issue for an isolation filter that is independently tracking this, as opening an
existing NTFS file might cause re-entrant file zeroing. It is possible to set the VDL of a file, though it requires
the privilege as we mentioned earlier. That is because moving the VDL out without zeroing the file could
expose information to the application. We decided against this approach and instead fell back to the FAT
model: zeroing the file at final cleanup or anytime a “hole” is created within the file. That’s unfortunate
because it will create situations in which we perform I/O unnecessarily. Hopefully this is an oversight that
Microsoft will rectify in a future version of Windows – that just doesn’t help us now.

Our approach to isolation is also complicated when it comes to size management because we explicitly do not do any serialization
around calls to the file system. This makes it far less likely that we will end up with a deadlock – the original intent – but it also
means that we can never assume that the file won’t change sizes while we are operating on it.

Of course, we have to assume file sizes can change at any time when accessing a file across the network. Simultaneous shared
access to a file over the network is a reality that we must support (and will be a topic of future articles). Thus, we are prepared to
deal with errors being returned to us when we issue I/O operations. But for the non-network case, how could this happen? We’ve
observed several interesting cases:

 The file size changes while we are attempting to do I/O. This is the harsh reality of performing I/O operations
without holding locks.

 The VM system may perform I/O operations while we are performing I/O. While in our own isolation filter we
avoid cached writes, the file system beneath us is always free to convert a non-cached I/O into a cached I/O.
We have observed this in practice with NTFS in recent versions of Windows.

 A file may discard I/O operations because it is in the process of being deleted. This makes sense, as its
inefficient to do I/O to a file that’s going to be discarded, but it leads to the peculiar situation of getting
STATUS_SUCCESS back, even though zero bytes are written to the file. In our case, we just treat it as expected
behavior and continue on ahead.

In our own work, we’ve found that managing file sizes was more complex than originally anticipated. While we are now

successfully managing this, it took many weeks of concentrated effort and work as we constructed a viable model for how to

manage this. Hopefully this brief description will help future developers in this area deal with the surprises that are in store for

them.

(CONTINUED FROM PAGE 11)

Follow us!

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 17
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

KERNEL DEBUGGING & CRASH ANALYSIS SEMINAR
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

For more information, visit www.osr.com/seminars/kernel-debugging/, or contact an OSR
seminar coordinator at seminars@osr.com

Hint 3: Whenever You Encounter a Driver Problem, Examine the WDF Log
Got an error status back from your call to WdfIoQueueCreate? Perhaps your driver was running great, and then it suddenly
crashed. In debugging a WDF driver problem, your first step should always be to examine the WDF Log.

The WDF Log is always enabled. You examine the log using the command:

!WDFLOGDUMP <drivername.sys>

Because you've enabled both WDF Verifier and Verbose Logging (as a result of reading and following Hint 1), your log can contain
all sorts of additional interesting information whenever you encounter a problem. Sure, there can be a lot of nonsense about
internal plug and play and power states. But, trust me, you'll get used to seeing that after a while, and you might even find it
helpful someday. Until you do, just look for log entry information that's really obviously useful. When you have Verbose Logging

(CONTINUED FROM PAGE 9)

(CONTINUED ON PAGE 18)

Figure 1 -- Using !WDFDRIVERINFO to show WDF Verifier options

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
mailto:seminars@osr.com

Page 18
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

enabled, I bet you'll be surprised at the very "English-Language like" information that can appear in this log to help you diagnose a
problem.

Figure 2 shows an example of output from the WDF Log displayed after an error was encountered in the driver's
EvtDriverDeviceAdd Event Processing Callback. The dev creating this example cut and pasted some code to create a WDFQUEUE,
but changed the Queue Dispatch Type to Manual. You can see the results at log records 12 through 14.

Not every message is this clear, but (when verbose logging is enabled) many are. This is why it makes sense to check the log every
time you find an error.

Hint 4: Those Weird NTSTATUS Values are WDF-Specific Statuses
A very common question that we get in our WDF seminar is, "What's going on! The NTSTATUS value I got back from calling a
KMDF function isn't listed in NTSTATUS.H!" Correct! If you get a status value that starts with 0xC020xxxx, it's a custom WDF status
value. Check the file WDFSTATUS.H in the WDK's \Include\wdf\kmdf\<version> or \include\wdf\umdf\<version> directory. There
you'll find the definitions of the WDF-specific status values, some of which are very specific and helpful. Awesome, right?!

Hint 4: Don't Worry if the WDF Log Contains Odd Function Names
This is a problem that we don't see as much with new versions of KMDF than we used to. But if you're using an older version of
WDF you may still run into it, so it's worth mentioning.

Let's say, for example, you call WdfWorkItemCreate and forget that specifying a WDF_OBJECT_ATTRIBUTES structure is required.
You get back an error, but when you look in the WDF Log for further information you see a message that says something like:

imp_WdfDpcCreate - WDF_OBJECT_ATTRIBUTES required, status 0xc0200212

We previously explained how to make sense out of the status, but what's with the "WdfDpcCreate"?? Your driver might not even
call WdfDpcCreate.

In older versions of KMDF, the function name shown in the Log isn't always correct - So, you should just ignore it. We whined to
the WDF team about it, and they've fixed most of these references in newer version of KMDF. In a recent version, for example,
instead of the above message you'll get:

FxValidateObjectAttributesForParentHandle - WDF_OBJECT_ATTRIBUTES required, NTSTATUS=C0200212

That's much better, don't you think? Thanks WDF team! Meanwhile, if you're using an older version of KMDF, don't be confused if
you see the name of a function you didn't call. Just ignore the name, and pay attention to the message.

Hint 5: Use the WDF Debugger Extensions!
Our final hint is really the gateway to WDF debugging power. I used to sit across the hall from a guy who worked pretty frequently

(CONTINUED FROM PAGE 17)

(CONTINUED ON PAGE 19)

Figure 2 -- Gee... I wonder why my call to WdfIoQueueCreate failed?

Page 19
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

on WDF drivers. I'd hear him in his office cursing, trying to figure out what was going wrong in his KMDF code. I think he felt like
he never really knew what was happening, between the Event Processing Callbacks, the WDF-managed state, and the opaque WDF
Objects. He could debug a WDM driver in a flash – but trying to run down problems in a KMDF driver often left him frustrated.

The hint he was missing was that he needed to make better use of the WDF Kernel Debugger Extensions. These extensions are the
key to WDF driver debugging happiness. When I'm debugging a WDF driver, I usually like to start by viewing the driver's WDF
Object hierarchy, and the handles associated with each of the objects. This is easily done by using the !WDFDRIVERINFO command
with a flags value of 0x70 as shown in Figure 3.

In Figure 3, you can see we have a WDFDRIVER Object (with no context) that has a single WDFDEVICE associated with it. That
context is of type NOTHING_DEVICE_CONTEXT, and if we want to see what's in the device context area, we can dump it using the
DT command shown.

It's a bit hidden (look carefully in Figure 3 to find it, buried after the 4th WDF INTERNAL object in the handle list), but you can also
see that there's a single WDFQUEUE associated with the WDFDEVICE. You can just cut and paste the WDFQUEUE command shown
in the output to find information about the Queue. This is shown in Figure 4 (page 20).

(CONTINUED FROM PAGE 18)

(CONTINUED ON PAGE 20)

Figure 3 - WDF Object Hierarchy

Page 20
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an
OSR seminar consultant at +1.603.595.6500 or by email at seminars@osr.com

In the output shown in Figure 4, you can see the Queue's attributes. Note that a PASSIVE_LEVEL Execution Level constraint has not
been applied ("ExecutionLevelDispatch" is shown) and there's no Sync Scope associated with this Queue
("SynchronizationScopeNone").

You can also see that the Queue is empty ("Number of waiting requests" is zero) and there are no Requests in progress ("Number
of driver owned requests" is zero). This Queue handles Read, Write, and Device Control functions via the Event Processing
Callbacks shown. Note that there's no Event Processing Callback provided for Internal Device Controls, so this driver does not
handle that type of I/O operation. With the names of the I/O Event Processing Callbacks, you can easily cut and paste to set
breakpoints on any of these routines if you desire.

There's also a huge amount of information you get about your device, its capabilities, and its state using the !WDFDEVICE
command shown in Figure 3. Just by cutting and pasting that command (and adding the flags 0xFF, which means "give me
everything!") you get the large collection of information shown in Figure 5 (page 21).

The output in Figure 5 is pretty much self-explanatory. Note that this can help you diagnose both PnP and Power issues. You also
have the WDM Device Object pointers that correspond to the WDFDEVICE, its upper filter, and its PDO. So, you quite easily can
take your debugging into the realm of WDM if necessary.

These commands are only examples. There are commands that are equally powerful for just about every WDF Object. And what's
really cool is that you can use just about all of these commands in UMDF V2, just like you can in KMDF.

There You Have It
So there are our top five hints for making your life developing and debugging WDF drivers easier. We'd like to hear your hints. If

(CONTINUED FROM PAGE 19)

(CONTINUED ON PAGE 21)

Figure 4 -- WDFQUEUE, its attributes and Callbacks

http://www.osr.com/private-on-site-training/
mailto:seminars@osr.com

Page 21
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

you've got a hint to share, tweet it to us @OSRDrivers . We'll find a prize lying around the office for the best hint that's tweeted to
us in the two weeks following the release of this issue of The NT Insider. C'mon… let's hear your hints!

(CONTINUED FROM PAGE 20)

Follow us!

Figure 5 - Everything you always wanted to know about your WDFDEVICE

http://www.twitter.com/osrdrivers
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 22
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

We then start the driver, let it run for a while, and dump out our context structure in the debugger. Much to our surprise, on a
seemingly idle system we’ve had a good number of misses:

0: kd> dt 0xffffe001e984c600 Nothing_KMDF!NOTHING_DEVICE_CONTEXT

 +0x000 Nothing : 0

 +0x008 Timer : 0x00001ffe`166eda48 WDFTIMER__

 +0x010 LastTimestamp : _LARGE_INTEGER 0x01d0511c`90e0118a

 +0x018 Hits : 0x13a8

 +0x01c Misses : 0x43

0x43 injured people in a few seconds seems like a bad situation for a product, so we want to investigate more. What happened
during those 0x43 occurrences that led to the missed timer period??

Enter Xperf and the Windows Performance Analyzer
This scenario is exactly what Xperf is all about. Xperf gives us the ability to peer into the state of the Windows OS and see exactly
what was happening over a collection period. Xperf is provided as part of the Windows Performance Toolkit, which installs along
with the WDK.

Xperf itself is simply a utility to enable and collect data from Event Tracing for Windows (ETW) Providers. There is one provider, the
NT Kernel Logger, which provides kernel level trace data from the OS and any Microsoft supplied drivers (e.g. WDF, Filter
Manager, etc.). Additionally, there are any number of “User Mode Providers”, which despite the name, can exist either in user
mode or third party kernel mode. User Mode Providers are identified and enabled either by GUID or by a registered name.

To start our analysis, we’re going to focus on enabling the NT Kernel Logger. There are various flags that we can enabled for this
provider and we can see them by running: xperf.exe –providers kf. For this trace, we’re going to choose to enable the following
flags in the NT Kernel Logger:

 PROC_THREAD – Records process and thread activity

 LOADER – Records the loaded module list from the system, which will allow us to resolve function addresses into
function names using PDBs

 DPC – Deferred Procedure Call activity. WDFTIMERs are really just DPCs under the hood, so this is an important one

 INTERRUPT – Interrupt Service Routine activity. Interrupts can interrupt DPCs, so interrupts might be the reason for
our misses

 WDF_DPC – We’re using a KMDF driver for this activity, so this is an important flag to set. Using this flag, the NT
Kernel Logger will work in conjunction with WDF to record our DPC routine information instead of the
Framework’s. Without this flag, all DPCs used by all KMDF drivers would be bundled together in the trace (i.e. every
DPC event logged from a KMDF based driver would point to the one Framework DPC wrapper)

 WDF_INTERRUPT – Same as WDF_DPC, except for Interrupt Service Routines. We don’t have an ISR in this driver, so
this one is just for completeness

We enable all of the above with the command shown in Figure 2:

(CONTINUED FROM PAGE 7)

(CONTINUED ON PAGE 23)

Figure 2 — Starting (and then Stopping) an NT Kernel Logger Trace

Page 23
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

We can now enable our driver, allow a few seconds to pass to collect some data, and then stop the trace. The resulting log data
will be collected to an Event Trace Log (ETL) file that we specify. In this case, we’ll store the results into the TickMiss.etl file (again,
see Figure 2).

Now for the fun part. By double clicking the resulting ETL file, we will open the trace data in the Windows Performance Analyzer
(WPA) application (Figure 3).

On the left hand side of WPA, we see entries for each of the ETW Providers and flags that we enabled. Before proceeding any
further, we want to translate any function addresses in the trace into symbolic names. We’ll do this by clicking Trace->Load
Symbols.

Once the symbol files have loaded, we want to dig in to some details about what was happening on the system. The view of the
data that we’re going to focus on for this article is the DPC/ISR Timeline by Module, Function, which you can find under the

(CONTINUED FROM PAGE 22)

(CONTINUED ON PAGE 24)

Figure 3 — WPA Default View

DID YOU KNOW?

We use and teach with the most recent released version of Windows in all our

public seminars. This makes it easy to learn the latest advancements in the O/S

and tools. But hey, we’ve been Windows kernel devs since the first release of NT,

and are happy to walk down memory lane on a particular topic if you’re company

or customers aren’t so forward-looking.

http://www.osr.com/seminars/

Page 24
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

Computation entry in the Graph Explorer. Once you have located this view, double click on it to bring it into the Analysis
window. The resulting display will look something like Figure 4.

What we see in the resulting Analysis window is a timeline showing the duration of every DPC and every ISR that happened during
the trace. The DPCs and ISRs are grouped by the module that they occurred in and we do indeed see invocations to our
NothingEvtTimerFunc happening in the Nothing_KMDF.sys module. By clicking on this entry in the display, WPA will highlight each
execution of the callback in the timeline, as shown in Figure 5.

(CONTINUED FROM PAGE 23)

(CONTINUED ON PAGE 25)

Figure 4 — Analysis View of DPC/ISR Timeline

Figure 5 — Our Timer Callback Invocations

Page 25
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

If we right click at this point and select Zoom, the display will zoom in and only show the period of the timeline where there are
events from our driver. This allows us to immediately exclude anything in the trace that happened before our driver was loaded,
which is a useful first pass at isolating what interests us.

Additionally, we can use the mouse to highlight a custom range and then zoom into that, which you can see in the following two
steps. First we highlight, as shown in Figure 6.

And then we zoom by Right Clicking and selecting Zoom. The result of the zoom is shown in Figure 7.

Pretty awesome, right? We get to see exactly which DPCs and ISRs were running during this time period and potentially use that to
locate where our delays are coming from.

(CONTINUED FROM PAGE 24)

(CONTINUED ON PAGE 26)

Figure 6 — Highlighting a Custom Page

Figure 7 — Zooming in to a Custom Range

Page 26
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

Needle in a Haystack?
Of course, the astute reader is probably thinking “Great. I am now full of awe and am heading off to do volunteer snow shoveling
of roofs in New England. However, when I get back I have no idea which of these events corresponds to a missed timing.”

The trouble of course is that this trace is giving us everything, not just the moments of time where we get a miss of our timing
window. According to Figure 5, there were 712 unique invocations of our timer callback in this trace (the Count column). Some
small percentage of these indicate misses, so how are we supposed to isolate the “bad” invocations without going through all
712?

This is where adding our own, custom trace points to the Xperf analysis comes in. This involves turning our driver into an ETW
Provider and generating trace events at the appropriate time. Once our driver has trace events, we simply need to enable our ETW
Provider along with the NT Kernel Logger. This way, we’ll have both sets of trace events in the resulting ETL and can use our
custom trace events to focus our analysis.

Creating an ETW Provider
Turning our driver into an ETW Provider is a simple process, even if the syntax might be a bit confusing. Here are the steps we
need to follow:

1. Create an “instrumentation manifest” that describes our trace events. This is just an XML file that we can either
create by hand or by using the SDK’s Manifest Generator utility (EcManGen.exe)

2. Modify our project to invoke the Message Compiler to turn our manifest into:
a. A binary resource blob to include in our image
b. A header file with generated functions to register our ETW Provider, unregister our ETW Provider, and

generate trace events
3. Include the header file generated in Step 2
4. Add trace events to our code

The manifest file is pretty ugly, but there is much documentation and many samples for both user mode and kernel mode
available. The rest of the steps are the same in user mode and kernel mode and are relatively straightforward.

In our example, the important part of our instrumentation manifest is the portion that describes our one event that we log (full
manifest is provided with the sample code). This event will be logged any time we experience a miss in our timing window and will
include with it the time delta:

 <templates>
 <template tid="tid_Expiration">
 <data
 inType="win:UInt64"
 name="Delta"
 outType="win:HexInt64"
 />
 </template>
 </templates>
 <events>
 <event
 channel="SYSTEM"
 level="win:Informational"
 message="$(string.ExpirationMiss.EventMessage)"
 opcode="win:Info"
 symbol="ExpirationMiss"
 template="tid_Expiration"
 value="1"
 />
 </events>

The template describes what data we’ll be logging with our trace event. In this case, we’re going to input a single 64-bit value
named “Delta” and we want that output in Xperf as a 64-bit hex value.

(CONTINUED FROM PAGE 25)

(CONTINUED ON PAGE 27)

Page 27
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

The event describes the actual event, which refers to the template to supply input and output data.

Once we have compiled this manifest and included the appropriate header in our project, we can call a generated function named
EventWriteExpirationMiss (this is “EventWrite” followed by the symbol tag from the above manifest). We’ll provide to this
function an optional activity ID (for matching up related trace events) and the delta from our calculation:

if (delta > ((20 * 1000 * 1000) / 100)) {

 devContext->Misses++;

 EventWriteExpirationMiss(NULL, delta);

} else {

 devContext->Hits++;

}

Registering Our Provider
On our test system, we’ll want to register our manifest as an ETW Provider. This makes starting and stopping traces easier, as we
can do it by name instead of GUID, and allows Xperf to put some additional information in the ETL file. Open an elevated command
prompt and import the manifest using the wevtutil.exe utility as shown in Figure 8.

(CONTINUED FROM PAGE 26)

(CONTINUED ON PAGE 28)

ARE YOU PASSIONATE ABOUT WINDOWS INTERNALS, DRIVER
DEVELOPMENT AND KERNEL DEBUGGING?

OSR is Hiring!

OSR is hiring one or more Software Development Engineers to implement, test and debug
Windows kernel mode software.

We’re looking for a very talented individual (or two) to grow into valued contributors to the OSR
engineering team, our clients, and the community.

Do you need to be a Windows internals guru? No—we’ll help you with that—but you DO have to
LOVE operating system internals. It’s what we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so if this is YOU or someone you know, get in touch
with us and tell us why we can’t afford NOT to hire you. See www.osr.com/careers for more
detail.

Figure 8 — Importing a Manifest

http://www.osr.com/careers
http://www.osr.com/careers
http://www.osr.com/careers

Page 28
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

Starting a New Trace
We now need a new Xperf trace that includes our custom trace data. We’ll do that by enabling both the NT Kernel Logger as well
as our custom provider on the xperf.exe command line. This is as easy as adding another –start directive, followed by a custom
name for this trace, followed by the registered name in the manifest (in this case “OSR Nothing KMDF”). The full command line is
shown in Figure 9.

After a period of time, we’ll then want to stop both ETW Providers. Again, we simply need to specify two –stop directives on the
command line (again, Figure 9). Trace data from both providers will appear in the resulting ETL file.

Finding Our Custom Trace Events
It’s not intuitively obvious where our trace events can be found in the WPA, but once you know where they are it sort of makes
sense. Because we’re a third party driver generating trace data, we are considered to be a “User Mode Provider” (yes, even though
we traced this data in kernel mode). User Mode Providers are found in WPA under System Activity->Generic Events. The events
here are listed in a timeline and grouped by the ETW Provider. Thus, double clicking on this entry in the Graph Explorer shows us
our custom trace events in the Analysis view (Figure 10) along with any other User Mode Providers that were enabled.

Using this, we now know which parts of the timeline include misses of our deadline. We can use the zoom in feature of WPA to
zoom in to a particular time period, then explore the other ETW Provider data within that period to determine the cause.

(CONTINUED FROM PAGE 27)

(CONTINUED ON PAGE 29)

Figure 9 — Starting (and then Stopping) Multiple ETW Providers

Figure 10 — Custom ETW Provider Data

Page 29
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

As an example, Figure 11 zooms in to the period in between two invocations of the timer callback. Each of those invocations is
shown by a blue line on the timeline. The first invocation hit the deadline, but the next invocation did not (as evidenced by the
existence of our custom trace event, shown as a diamond on the "Provider Name: OSR Nothing_KMDF" series in the top right)). By
zooming all the way in to this time period, we can see that in between these two invocations there was a DPC or ISR from the
graphics subsystem (dxgkrnl), VMware (vm3dmp.sys), and the OS itself (ntoskrnl). In addition, the storage controller (storport)

(CONTINUED FROM PAGE 28)

(CONTINUED ON PAGE 30)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or
contract programming house, that’s why. The money you think you’ll save in hiring inexpensive
help by-the-hour will disappear once you realize this trial and error method of development has
turned your time and materials project into a lengthy “mopping up” exercise...long after your
“inexpensive” programming team is gone. Seriously, just a short time ago, we heard from a
Turkish entity looking for help to implement a solution that a team it previously hired in Asia
spent two years on trying to get right. Who knows how much money they spent—losing two
years in market opportunity and still ending up without a solution is just plain lousy.

You deserve (and should demand) definitive expertise. You shouldn't pay for inexperienced
devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

Figure 11—Period with Missed Deadline

http://www.osr.com/custom-development/
mailto:sales@osr.com

Page 30
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

generated 10 DPCs or ISRs in this window. Even though you can't see each of these on the DPC/ISR Timeline in Figure 11 (they are
there, you just would have to zoom in a bit further to see 1 instance of an event), you can see these events listed in the table at
the bottom.

What we have here, then, is clear evidence that there was nothing wrong with the system, it was just busy, and that Windows is
not suited to this sort of task. However, using Xperf we don’t need to “guess” that this is true, we can actually collect the data and
see for ourselves.

Try It Yourself!
That’s a lot of screen grabs and bits of information and we barely scratched the surface, but hopefully you’re awestruck enough to

want to try it yourself. When it comes to Xperf practice is truly the best way to learn, as it takes exposure and perseverance to be

able to interpret any of this data. That’s why we’re providing the source to our example along with this article. Install it, run the

experiments, and start being a happier person today!

Code associated with this article:

http://insider.osr.com/2015/code/xperf.zip

(CONTINUED FROM PAGE 29)

Follow us!

FILE ENCRYPTION SOLUTION FRAMEWORK
OSR’s next generation solution now available via Early Adopter Program

The OSR File Encryption Solution Framework (formerly “Project Monadnock”) allows Clients to
incorporate transparent on-access, per-file encryption into their products. While adding on-
access encryption sounds like something that should be pretty simple to accomplish, it turns out

to be something that's exceptionally
complicated. Creating a solution that
performs well is even more difficult.

FESF handles most of the necessary
complexity, including the actual
encryption operations, in kernel mode.
This allow Clients that license FESF to
build customized file encryption products
with no kernel-mode programming.

Early releases of FESF are now available
via a limited-access Early Adopter
Program (EAP), which provides
discounted license terms in exchange for
feedback on product development using
FESF.

Contact the OSR Sales team at sales@osr.com to learn more.

Video demonstrating example copy
performance (Tech Preview)

http://insider.osr.com/2015/code/xperf.zip
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://insider.osr.com/2015/code/xperf.zip
http://www.osr.com/fesf/
mailto:sales@osr.com
http://vimeo.com/114176225

Page 31
www.osr.com

The NT Insider March-April 2015 © OSR Open Systems Resources, Inc.

So, the way things look today, on Windows 10 you get your itty-bitty, Windows 95 and Windows 7 style, list of folders back. And
while you can increase the size of the start menu to full screen, the useful Windows 8.1 style category view for desktop apps is
nowhere to be found.

I call this change. But I do not call this
progress. Progress means moving forward.
Towards "betterment." Going back to an
interface designed years ago for little screens
is not better. It's silly.

There's a saying in English "The customer is
always right" – In French they say the
analogous "le client n'a jamais tor." I say this
is complete bullshit. In tech, the customer is
almost never right. Because the customer
almost always wants exactly what they're
used to, what they've had for years, until they
try, seriously try, the new thing you're giving
them. And when it comes to user interfaces
"change aversion" is legendary. The problem
is with the Internet echo-chamber, it's easier
to just repeat the latest meme than spend the
time to think through an issue.

So, the Windows 95 / Windows 7 start menu is definitely not superior to the Windows 8.1 start screen. Not by any rational
standard I can think of. And returning to a 20 year old design in Windows 10 does not seem like a good way to make progress to
me.

But, I think the real question is why does it have to be one way or the other? I think the only mistake Microsoft made in Windows
8 was forcing the start screen on people, and not providing the older start menu interface as an option during the transition
period. Make it so people can use the old way that they've come to know and love, while they have the opportunity to eventually
try out the newer interface. If they had done this, I bet the reaction to the changes in Windows 8 wouldn't have been even half as
vehement.

And so, for Windows 10… if you have to give us the little bitty strip of application folders, can we at least also have access to the
Windows 8.1 start screen somehow? Maybe when you enlarge the Win 10 start menu to full screen, it becomes the older
Windows 8 apps start screen, the one you see when you select the down arrow?

Well, there's plenty of time for the look and feel of Windows 10 to change. No date has yet been announced for its release. And
in the time that's left, I hope Team Nadella gives the rabble the start menu they want today, and the start screen they'll come to
appreciate if they ever freaking try it.

If they don't give us a start screen, maybe we can raise a fuss on the Internet. Wouldn't that be funny. People clamoring for the
return of the Windows 8.1 start screen.

Nah. It won't be an Internet meme. Never happen.

Peter Pontificates is a regular column by OSR Consulting Partner, Peter Viscarola. Peter doesn’t care if you agree or disagree with
him, but there’s always the chance that your comments or rebuttal could find its way into a future issue. Send your own comments,
rants or distortions of fact to: PeterPont@osr.com.

(CONTINUED FROM PAGE 5)

Follow us!

Figure 4—Windows 10 Start Menu (image courtesy BetaNews.com)

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

®

A private, on-site seminar format
allows you to:

 Get project specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping, or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

Seminar Dates Location

Developing File Systems 12-15 May Boston/Waltham, MA

Internals & Software Drivers 18-22 May Dulles/Sterling, VA

WDF Drivers: Core Concepts 8-12 June Boston/Waltham, MA

WDF Drivers: Advanced
Implementation Techniques

15-18 June Boston/Waltham, MA

Kernel Debugging & Crash Analysis 3-7 August Dulles/Sterling, VA

W hen we say “we practice what we teach”, this mantra directly translates into the value we
bring to our seminars. But don’t take our word for it...below are some results from recent

surveys of attendees of OSR seminars:

 I've learned everything that I wanted to learn and quite a bit that I did not know I needed.

 I think Scott nicely catered to a diverse audience, some of whom had only taken intro to OS
and some who already had experience developing drivers.

 Scott was fantastic. He was very helpful at trying to meet each student’s needs. I will highly
recommend him and OSR to my associates.

 “Peter’s style of teaching is excellent with the kind of humor and use of objects to give you a

visual representation of how things work that was simply amazing.

 “I was very nervous coming in to the seminar as I wasn’t sure I had enough hands on

experience and background knowledge on Windows internals. The class put my mind at ease

and I was able to quickly grasp and understand the concepts.”

 “I was pleased with the experience. As someone new to driver development, it gave me a

better understanding of the framework and made me a lot more comfortable working with

our driver code.”

THE NT INSIDER - Hey...Get Your Own!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

http://www.osr.com/seminars/file-systems/
http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/advanced-wdf/
http://www.osr.com/seminars/kernel-debugging/
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com

